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An analysis is presented of the mechanics of red blood cells flowing in very narrow 
tubes. Mammalian red cells are highly flexible, but their deformations satisfy two 
significant constraints. They must deform a t  constant volume, because the contents 
of the cell are incompressible, and also a t  nearly constant surface area, because the 
red cell membrane strongly resists dilation. Consequently, there exists a minimal 
tube diameter below which passage of intact cells is not possible. A cell in a tube with 
this diameter has its critical shape : a cylinder with hemispherical ends. Here, flow of 
red cells in tubes with near-minimal diameters is analysed using lubrication theory. 
When the tube diameter is slightly larger than the minimal value, the cell shape is 
close to its shape in the critical case. However, the rear end of the cell becomes 
flattened and then concave with a relatively small further increase in the diameter. 
The changes in cell shape and the resulting rheological parameters are analysed using 
matched asymptotic expansions for the high-velocity limit and using numerical 
solutions. Predictions of rheological parameters are also obtained using the 
assumption that the cell is effectively rigid with its critical shape, yielding very 
similar results. A rapid decrease in the apparent viscosity of red cell suspensions with 
increasing tube diameter is predicted over the range of diameters considered. The red 
cell velocity is found to exceed the mean bulk velocity by an amount that increases 
with increasing tube diameter. 

1. Introduction 
The aim of this paper is to develop theoretical models for the motion of elongated 

rigid and flexible particles along tubes, when particle diameters are comparable with 
tube diameters. This work is motivated by an interest in the flow of red blood cells 
in microvessels. In  large vessels, such as arteries and veins, blood can be represented 
as a continuum, but in microvessels the particulate nature of blood must be 
considered. Fahraeus & Lindqvist (1931) showed that the apparent viscosity of blood 
in microvessels decreases with decreasing vessel diameter. Gaehtgens (1980), using 
human blood, demonstrated that this reduction continues down to capillaries with 
diameters of 4 to 5 pm. However, the apparent viscosity increases for vessels with 
diameters less than this, and tends to infinity as a critical diameter is reached. This 
is the minimal vessei size that allows a cell to  pass without increasing its surface area. 
It has long been stated that the cell shape in this critical case is a cylinder with two 
hemispherical ends (Canham & Burton 1968). This may be verified using the calculus 
of variations, by seeking to  minimize the vessel radius while satisfying the 
constraints of constant cell volume V and surface area A .  For typical human cells 
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( V  = 90 pm3, A = 135 pmz)), the critical radius rc is 1.42 pm and the length 1, of 
the cylindrical part is 12.26 pm. 

Theoretical models to describe the motion of red blood cells can be formulated 
from first principles, since extensive experimental work has been carried out to 
determine the mechanical properties of red blood cells. The fluid mechanics of the 
suspending plasma must also be considered. Several approximations can be made 
since the plasma is an incompressible Newtonian fluid, and since inertial effects are 
negligible. The existence of a thin plasma layer between the vessel and membrane 
walls suggests that the Navier-Stokes equations can be approximated by those of 
lubrication theory. Experimental observations show that as the capillary radius 
decreases, the red cells become longer and narrower and have approximately 
axisymmetric shapes. 

Secomb et al. (1986) developed asymptotic and numerical solutions for the motion 
of axisymmetric red blood cells in capillaries, using lubrication theory. Here, 
analogous methods are used to analyse red cell motion in narrower capillaries, with 
near-minimal diameters. I n  $2 the governing equations of membrane equilibrium 
and fluid mechanics are established. Section 3 is devoted to  asymptotic and 
numerical solutions for near-critical cell shapes which correspond to the high- 
velocity limit, and $ 4  to solutions for less elongated red blood cells. In $5 the 
equations derived in $2  are solved numerically, and the results are compared to the 
predictions of $$3 and 4 and to other analyses. This model has essentially three free 
parameters : the sphericity index 

the vessel radius, and the cell velocity. Solutions for cells with different sphericities 
are presented here since red blood cells may have a wide range of volumes and surface 
areas (Papenfuss & Gross 1981). 

2. The governing equations 
2.1. Membrane equilibrium 

The red blood cell consists of a thin elastic membrane filled with cytoplasm, which 
is an incompressible Newtonian fiuid. Under steady conditions only elastic resistance 
to deformations needs to be considered. The modulus of shear elasticity (4.2 x lop3 
dyn/cm) is much smaller than that of isotropic dilation (500 dyn/cm). Thus isotropic 
tension which tends to increase the area of the membrane encounters a stiff elastic 
resistance but, at the same time, the membrane shears readily. The bending modulus 
(1.8 x dyn cm) is also very small and consequently bending resistance is 
significant only in regions of high curvature. 

The external fluid forces are balanced by membrane-induced stresses. When the 
membrane is highly stressed, shear and bending strains must be very large in order 
to generate correspondingly large shear and bending resistances, but small membrane 
dilations can generate high isotropic tensions. I n  vessels with near-minimal 
diameters, large external viscous shear stresses are therefore balanced primarily by 
isotropic tensions. We refer to this as the high-velocity limit. Shear and bending 
resistances become increasingly important a t  low cell velocities. 

Following Secomb et al. (1986), we introduce cylindrical coordinates (g, q5, z )  as 
shown in figure 1.  It is convenient to identify points on the membrane surface in 
terms of s, the arclength in a plane containing the axis, and 4, the azimuthal angle. 
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4" 

FIGURE 1. Variables describing geometry of an axisymmetric red blood cell in a cylindrical tube. 

Also we define r (s ) ,  the distance from the axis; O(s), the angle that the vector n 
normal to the surface makes with the z-axis; k,(s) and k , ( s ) ,  the principal curvatures; 
m,(s) and m4(s), the bending moments; t,(s) and ta(s), the membrane tensions; and 
q, (s ) ,  the shear force per unit length. The subscripts s, 9 represent components in the 
coordinate directions. The components of tension are 

t, = t,+t,, ta = t , - t , ,  (2.1) 

where t ,  = $K ( A ~ - A ; 2 ) - ~ ( k , - k , ) ( k , + k 4 - k , ) ,  (2.2) 

in which the interaction between bending and tension forces is included (Secomb 
1988). Here t,(s) denotes the mean tension, K is the shear modulus of the membrane, 
A, = ds/ds, = r o / r  is the extension ratio of a membrane element relative to the 
unstressed shape, B is the bending modulus and k,  is the unstressed curvature. The 
unstressed shape is assumed to be a sphere (Secomb et al. 1986). The bending 
moments are assumed to be isotropic (Evans & Skalak 1980), and are given by 

m, = m, = B ( k , + k , - k , )  (2.3) 

The curvatures k, and k, are given by 

sin 0 de 
k, = -. 

r ds k, = -, 

The external forces are the pressure difference p ( s )  between the external and 
internal fluids and viscous stress 7(s) due to the external fluid. The equations for 
equilibrium of normal stress, tangential stress and bending moments in the 
membrane are (Secomb et al. 1986; Secomb 1987): 

(2.4) 
I d  
--(rq,) = p + k , t , + k 4 t a ,  
r ds 

I d  t case 
- - ( r t , )  = L - k s q s - 7 ,  
r ds r 

I d  ma GOS 8 
- - (rm,) = 
r ds r + q s .  
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2.2. Lubrication theory 
The flow of the suspending fluid can be modelled using Stokes equations in cylindrical 
coordinates (u, q5,z). The further approximations of lubrication theory can be made 
since the angle between the membrane and vessel wall is small over most of the 
length of the cell. At the front and rear of the cell, the gap between the cell and the 
wall widens, and the angle is no longer small. However, lubrication theory can still 
be used without introducing significant errors, since it is found that pressure 
gradients in these regions are small compared with their values in the narrow-gap 
region. Further justification for this approximation is given in $4.1. The momentum 
equation in the axial direction is then 

where u is the axial component of velocity and the pressure p is a function of z only. 
We fix the axes in the cell so that  the boundary conditions are u=O on the 
membrane surface u = r ( z )  and u = uo a t  the vessel wall u = a, where r (z)  defines the 
membrane surface, uo is the cell velocity and a the vessel radius (figure lb).  Equation 
(2.7) can then be integrated and the pressure gradient is given by (Secomb et al. 1986) 

whcrc (2.9) 

is known as the leakback, the volume flow per unit vessel circumference relative to 
the cell, and is independent of z .  The shear stress on the cell is 

(2.10) 

If the gap width is assumed small compared with the vessel radius, then a two- 
dimensional approximation to (2.8) may be deduced by setting r = a-h where 
h < a. This form is standard in lubrication theory, and is derived more simply 
starting with the two-dimensional approximation to (2.7) : 

(2.11) 

where y = a-v, u(y) is the axial velocity and p ( z )  is the pressure. The boundary 
conditions are u = 0 when y = h, and u = uo when y = 0. The pressure gradient can 
then be written in terms of the constant leakback go and the gap width: 

where Qo = LUdY. (2.12) 

The shear stresses acting on the cell membrane and the tube wall are, respectively, 

7(h) = 6 , ~ ~ ~ h - ~ - 2 p ~ ~ h - l ,  7,(h) = 6 p ~ , h - ~ - 4 / ~ ~ , h - ' .  (2.13) 
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This two-dimensional form is simpler than the axisymmetric form, and equivalent 
to i t  when the gap is very narrow. However, it has been shown that the axisymmetric 
form yields more accurate results if the gap is not very narrow relative to the tube 
radius (Secomb et al. 1986). Both forms are used below. 

2.3. System of equations 
The complete problem is specified by combining the equations of axisymmetric 
lubrication theory, (2.8) and (2.10), with those of membrane equilibrium, (2.4), (2.5) 
and (2.6). A system of first-order ordinary differential equations is obtained with 
arclength s as the independent variable : 

dr  
ds 
- = case, 

de  
- = k,, 
ds 

(2.14) 

(2.15) 

(2.16) 

dP - = g( r )  sin 8, 
ds 

(2.18) 

cos 8 sin 19 
dt L- ds - - - [ K ( A : - A ; ~ ) R  r ( k -- si: ') (k, +-- r k,)] - k, q, - ~ ( r ) .  (2.19) 

The boundary conditions are that r and sine vanish on the axis and that the 
surface area and volume are prescribed. The classical assumptions of lubrication 
theory suggest that  g( r )  sine could be replaced by g ( r ) ,  and 7( r )  by 7( r )  sin8 in (2.18) 
and (2.19) respectively. However, analysis of Stokes flow in a corner ($4.1) shows 
that (2.18) and (2.19) give better results when 8 is not small. 

In  the high-velocity limit, the fluid stresses are balanced by isotropic tensions 
generated in the cell membrane. Then both shear and bending resistance are 
neglected and the above system of equations reduces to the following four equations : 

-- - cos8, dr 
ds 

dB p sin8 
ds t, r ' 
- - - 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

In  this case the solutions are independent of u,, the cell velocity. This limit will be 
considered in detail in $83 and 4. 
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3. Solutions for near-critical cell shapes 
3.1. Rigid particles 

In a vessel of near-minimal diameter, the red cell necessarily assumes a shape close 
to the critical shape already discussed. Secomb & Gross (1983) gave an approximate 
analysis of this case, assuming that the cell behaves as a rigid body with the critical 
shape. This analysis used two-dimensional lubrication theory, with a quadratic 
approximation to the gap width h(z) .  Ozkaya & Skalak (1983) and Ozkaya (1986) 
showed that closed-form solutions could be obtained even if this quadratic 
approximation was not used. For very elongated cell shapes, the two approaches 
yield very similar results, but the approach of Ozkaya & Skalak (1983) is more 
accurate for less elongated shapes. 

Here we summarize the analysis of Ozkaya & Skalak (1983), and extend it slightly 
to consider particles with spheroidal end regions of different lengths. We consider a 
body with a central cylindrical section of length pa and radius ha, and hemispheroidal 
ends of length aa and ya (figure 2 ) .  The pressure drop along the cell may be obtained 
by integrating (2 .9)  : 

where 
sin8 

(1 - A  sin 8)" 
d8 for n = 1 , 2 , 3 ,  

and C = 2qo/auo. To evaluate qo for rigid particles, we use the zero-drag condition, 
applied to a cylindrical region of radius a and the length of the cell. I n  this case, 

na2Ap+F = 0, (3.3) 

where F is obtained by integrating r,  (equation (2.13)) over the tube surface 
bounding the region, yielding 

F = 27capu0 (a+?) (3C12-4Z,)+p [ )I- (3.4) 

Hquation (3.2) can be integrated (Gradshteyn & Ryzhik 1980) 

1 + h2/2  + 3hA* 
I3 = (3.51 1 - A 2  ' (1-h2)2 ' 

2A* - n / 2  1 + 2hh* 
7 I ,  = h 

I ,  = 

where 

For given values of a,  y ,  /3 and A,  Ap and qo can be computed. Ozkaya (1986) gives 
a more detailed analysis covering a variety of particle geometries. We use the above 
results in $5. 

3.2. Flexible particles : outer solutions 

When the tube radius a is only slightly larger than the critical radius rc for a flexible 
particle, the constraints of constant surface area and volume imply that the cell shape 
must be close to the near-critical shape. In  this section, we show that the governing 
equations for flexible particles permit solutions for membrane shape with cylindrical 
and hemispherical 'outer' regions, as indicated in figure 3. Similar solutions wcre 
derived by Secomb et al. (1986) for cells with concave rear regions. 
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Pa 

--- 
a 

v 
FIGURE 2. Assumed geometry of a rigid particle flowing through a tube of radius a.  The particle 

consists of a cylindrical part of length pa and hemispheroidal ends of length aa and ya. 

One solution to (2.20)-(2.23) corresponds to a cylindrical membrane (region 111) : 

where r, is the cell radius, and t,, is a constant such that t, = tSi at  s = s, = inr,. A 
second approximate solution to (2.20)-(2.23) is obtained by noting that, according to 
(2.12) and (2.13), both the pressure and tension are constants (to leading order) when 
h is no longer small. The outer solution in region I is t,hen 

where 0 < s < !p,, rc  = 2t,,/pi, pi is the internal pressure of the cell and the external 
pressure in this region is set to zero. Similarly, the solution in region V is 

0 = (s-sSt) / rc+n,  r = rcsinO, p = po-pi ,  t ,  = t,, (3.9) 

where &re + 1, < s < st = nr, + I,, t,, = t(pi -po)r,  and p ,  is the external pressure in 
this region. 

There is an abrupt change in membrane curvature and hence in pressure a t  the 
points near the front and rear of the cell where the outer solutions meet. Therefore, 
the outer solutions must be matched through narrow transition regions (I1 and I V ) ,  
to remove these discontinuities. These transition regions are analysed in 553.3 and 
4.2. 

3.3. Flexible particles : transition regions in the high-tension limit 

For sufficiently small tube diameters, the tension is large in all parts of the cell 
membrane. In  this case, we suppose that the non-dimensional gap width E = 1 - r,/a 
is small and use the two-dimensional form of lubrication theory, (2.12) and (2.13), 
making the further assumption that variations of 0 from in are small. The following 
set of scalings is introduced : 

h = er, H ,  PUO p = - 6, P ,  
r c  

qo = $re uo Qo, s = rc S, S ,  t,  = pu0 6, T ,  0 = $7~ + S,8, 
(3.10) 

where S ,  the independent variable, and H ,  Qo, P,  T ,  8' are all of order one as E + 0. 
If these are substituted into (2.20)-(2.23), and powers of Si and E are equated, then 
it is found that 

(Sl, S,, 8,) = (ESil, 6-1 S;1, &3). (3.11) 
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FIQURE 3. Membrane regions used in asymptotic analysis : two ‘outer ’ hemispherical regions 
(I and V), an ‘outer’ cylindrical region (111) and two ‘inner’ transition regions (I1 and IV).  

For matching with the outer solutions (regions I, 111 and V), we require that the 
curvature is O(l) ,  i.e. 6,/6, = O(1). So 

(3.12) 

These scalings imply that the tension is high and approximately constant in the 
transition regions, and are consistent with those obtained by Secomb el al. (1986) for 
the front transition region. 

The following system of equations is obtained a t  leading ordcr in both transition 

3 1  (al, 6,, a,, 6,) = (€t, s-:, €P, €3)). 

regions : dH - = 8’, 
dS 

(3.13) 

(3.14) 

(3.15) 
dP 
- = 6(H-2-&0H-3),  
dS 

- = 0. 
dT 
dS 

(3.16) 

For matching with the cylindrical region 111, in which H = 1, the above scalings 
imply that dP/dS + 0 as H 3 1, and so Qo = 1 a t  leading order, i.e. qo = +Ere u,,. The 
tension T is replaced by constants q, where i = 1 at the front, and i = 2 a t  the rear, 
and new independent variables are introduced : 

ti = T;: (S - Smi) .  (3.17) 

It is convenient to set the origins of the inner coordinates ti a t  S = Smi, where 
H(S,,) = $. With this choice, T = 0 a t  the origins. Let H(X)  = f i ( t i ) .  Then 

f;’ = 6 -K’) 
with boundary conditions 

f; + O  astl  + m, fi(0) = t ,  

(3.18) 

(3.19) 

Since only two boundary conditions are available, the solutions are not necessarily 
unique. Although (3.18) cannot be solved in closed form, differences between the 
front and rear transition regions can be shown by linearizing about the solution 
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f, = 1 which applies in the cylindrical region. Setting f, = 1 + S@, where 6 < 1 
and substituting into (3.18), we obtain a t  leading order 

@y+6Qi = 0. (3.21) 

The general solution is 

where m, = -61, and A,,  B,, C, are to be determined by applying the boundary 
conditions. 

At the front transition, (3.19) implies that B, = C, = 0, and so G1 is uniquely 
determined (Secomb et al. 1986). The same holds for the nonlinear equation (3.18) 
and the function f, and its derivatives are obtained numerically (figure 4a) .  The 
transition from the hemispherical to the cylindrical region is smooth and monotonic. 

At the rear transition,(3.20) implies only that A ,  = 0, and so there is one remaining 
degree of freedom in Q, and f,, which must be determined by matching with the rear 
transition region. An example of f, is shown in figure 4(b) .  In  this case the solution 
a t  the rear has oscillatory modes which are not present a t  the front. The gap width 
(f) shows a local minimum before it widens in the rear region. This behaviour is 
characteristic of lubrication solutions with flexible membranes. The above theory for 
the transition regions is similar to that applied to the motion of long bubbles in 
capillary tubes (Bretherton 1961). 

To match the transition solutions with the upstream and downstream solutions, 
we consider the pressure 

P(&) = -q[l +TtIf ; (&)] .  (3.23) 

At the front, numerical integration of (3.18) shows that f 'I -+ k, w 2.123 as El + - 00. 

Since P -+ - Pl as 6, -+ - CQ and P, = 2T, to leading order, (3.23) implies that 

(3.24) 

The tension T,  in the rear transition region can be determined by using (2.13) and 

T - ki 
1 - 1' 

(2.23) : a 1  T, = k; - €3 lc/r,, (3.25) 

Now suppose f I -t k, as 6, + co. Since P +Po -PI as 6, -f CQ and P, -Po = 2 3 ,  

T, = k i .  (3.26) 

Then k, is determined by equating (3.25) and (3.26), and f, is uniquely determined. 
The pressure drop across the cell is given by 

AP = ~EQT, .  (3.27) 

From (3.25), the assumption that the tension T,  is high in the rear transition region 
will not be valid if 8 reaches a value 

k: r: 
E ,  = -. 

1: 
(3.28) 

For cells with V = 90 pm3 and A = 135 pm2, 6, zz 0.129. The corresponding vessel 
radius is a, x 1.61 pm. Note that for cells with higher sphericity indices, this 
estimate for ec may be inaccurate since 6 ,  is no longer small. For example, if 
V = 109.6 pm3 and A = 135 pm2, then 8, x 0.456. 

As the vessel radius approaches a,, the above asymptotic analysis has to be 
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FIQURE 4. The functionsf, andf, and their derivatives. (a) Front transition region (fi). ( b )  Example 
of fi in rear transition region. 

modified, since the tension at the rear transition region is no longer O(e-i) and cannot 
be assumed to  be approximately constant. This case is considered next. 

4. Solution for less elongated cell shapes 
4.1. Validity of lubrication theory in a corner $ow 

In  the previous analysis, the use of lubrication theory uniformly over the cell length 
was justified on the basis that the angle between the membrane and the wall was 
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Rear of cell 

wall 

FIQURE 5. Geometry assumed for analysis of flow in a corner. 

small in all regions where the gap width was not large. However, (3.14) suggests that 
the angle 0’ may be O(1) if the tension becomes sufficiently small in the rear 
transition, and so the applicability of lubrication theory should be examined. An 
indication of the accuracy of the lubrication theory approximation is obtained by a 
comparison with exact similarity solutions for the case of two-dimensional Stokes 
flow in a corner formed by one rigid plane sliding steadily over another (Batchelor 
1967), with a point source a t  the intersection of the two planes (figure 5 ) .  The 
comparison is made by evaluating the non-dimensionalised pressure gradient p ,  and 
the shear stress 7 on the inclined wall. The rear of the cell is approximated by two 
straight line segments as shown in figure 5 .  

The solution to the Stokes flow problem is determined by introducing a stream 
function II., which satisfies the biharmonic equation : 

v41j/ = 0. (4.11 

In  this case, II. = $.,+$., where the subscript c refers to the corner flow driven by 
the moving boundary (Batchelor 1967, p. 225) and s to the source flow. Similarity 
solutions are available in the form 

where r and 8 are the usual polar coordinates, and f and g satisfy 

where 8, is the angle between the two planes. The wall shear stress and pressure 

and 

(4.5) 

where R is the non-dimensional distance from the intersection of the two planes. 

theory) can be written 
The resulting estimates of shear stress (7, for Stokes flow solution, 71 for lubrication 
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FIGURE 6. Comparison of results of lubrication theory and similarity solution for Stokes flow in a 
corner. (a) G,(O,) and F,(O,) .  ( 6 )  K,(O,) and L,(O,,). 

l( and Gi are defined so as to approach finite non-zero values when 8, is small, and 
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Similarly, the estimates of pressure gradient are 

where 

(4.10) 

(4.11) 

(4.12) 

Figure 6 shows that the two methods yield very close results when 0, is small. Even 
for values of 8, as large as 45", the results of the two methods differ by a t  most 20%, 
suggesting that lubrication theory as formulated in $2.2 can yield useful results for 
finite angles. 

4.2. Intermediate tension at the rear 
As the vessel radius increases, the tension in the rear transition region decreases 
according to (3.25). Eventually, large curvatures occur in the transition region, from 
(2.21), and i t  is then necessary to reconsider the scalings introduced in (3.10). 
Equation (3.11) still applies, but the scalings (3.12) no longer hold, since the 
curvature is large (&,/a, % 1). From (3.11), 6, + &, 6, + d,  6, 4 e-f and S, 9 & in 
this case. In  particular, the tension in the transition is o(,uu,E-~). We leave the 
scalings undetermined, but assume that changes in membrane angle within the 
transition region are small, i.e. 6, < 1. 

With these scalings, the following system is obtained a t  leading order: 

(4.13) 

As in $3.3, we introduce a scaled coordinate [ = T-i(S-S,), let H ( S )  = f(<), and 
obtain an equation analogous to (3.18): 

f"' = s(f3-f 2 )  

with f ( O ) = &  f ' + O  as $-.-a and 7 - 0  as <+a. (4.14) 

The additional condition7 + 0 as $+ 00 is imposed (cf. (3.20)) since the curvature is 
large in the transition region, but is 0(1) in the outer region (V). 

For large 6, (4.14) can be approximated by the simpler equation f"' = -6f ', which 
has two possible asymptotic solutions as + 00, of the form (Bender & Orszag 1978, 

fa1 a['+P<+Y+ 6k6-k, (4.15) 
pp. 15e-158): m 

k-1 

and (4.16) 

where a, /3 and y are arbitrary, and 6, contains terms of order a-l. The solution fal 

corresponds to the result obtained in the high-tension limit (§3.3), and from (3.26), 
the tension in the rear transition is T, = (2.)" since f,", -. 2a as [-+ 00. As the gap 
width E approaches the value E ,  given by (3.28), the tension decreases, a approaches 
zero and fal becomes singular. The asymptotic solution for the intermediate- tension 
case considered here is fa', which satisfies the condition f,", +0  as [ + 00. The 
corresponding unique solution to (4.14) was obtained by numerical integration over 
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FIGURE 7 .  The function f and its derivatives for the intermediate-tension case. 

a finite range of 6 and matching to (4.16). The functionfand its derivatives are shown 
in figure 7. We conclude that when the tension becomes smaller than O(pu, e-g) in the 
rear transition region, high curvatures are generated locally. Beyond the high- 
curvature region, the angle (O-in) between the membrane and the wall grows as 
(log()$, rather than linearly with 6 as in the high-tension case. 

In  general, the angle @-in remains small in the transition region. However, if the 
tension is decreased sufficiently, this angle eventually attains O( 1) values a t  its 
matching with the outer solution in region V. In this case, 6,8' = O(1)  when 
6,(S-X,) = O(1). From (4.13) and (4.16) we find that 0' x (18log(/T)i for large 6. _ _  
Hence 

S4(lOg(1/6,))t = O(1). (4.17) 

Using (3.11), we deduce that this case occurs for the following scalings: 

(6,,6,,6,,6,) = (sllog& s-'llogsp, (logsl, (logsI-i), (4.18) 

which is consistent with the original assumption that $6 6, < 1. Thus, when the 
tension drops to O(puo(logel) in the rear transition region, the angle between the 
membrane and the wall attains an O(1) value (em-$) a t  the matching with the outer 
solution, and Om is given asymptotically by 

em z i n +  (i8pUo(iogs(/t,)~, (4.19) 

where t, is the tension in the transition region. 
The findings of this section are qualitatively consistent with the solutions 

postulated by Secomb & Gross (1983), in which the membrane tension reaches zero 
a t  the rear of the lubrication layer and the membrane angle has a discontinuity. This 
physically unrealistic behaviour is a consequence of the neglect of bending resistance 
in the membrane. The effects of bending resistance are considered in the next section. 
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5. Numerical solutions for cell shape 

new independent variable x is introduced, such that 
The boundary-value problems stated in $2.3 can be solved numerically. First, a 

(5.1) 

where R ,  is the radius of a sphere with the same surface area as the red cell. This 
procedure fixes the computational domain, 0 < x < R .  Since the differential equations 
are singular on the axis, a t  x = 0 and R ,  they are integrated over a slightly reduced 
domain, 6 d x d R - 6 ,  with 6 = n/m (m 2 30) ,  and matched to segments of circles a t  
either end. The above system is stiff and ill-conditioned, and was solved using 
multiple-shooting and finite-difference methods. 

Cell shapes, pressure and tension distributions computed using the isotropic ten- 
sion model (equations (2.20)-(2.23)) are shown in figure 8, for vessel radii of 1.451 pm 
and 1.572 pm. The numerical results are consistent with predictions made in 
previous sections. The isotropic tension does not vary much in the entrance region 
and decreases linearly in the cylindrical region until it reaches a minimum in the rear 
transition region. The pressure initially rises rapidly, then linearly in the cylindrical 
region, and oscillates a t  the rear where the cell shows an outwards bulge. As the 
vessel radius increases, the rear end becomes less convex and eventually flat,. Also, 
the amplitude of the pressure swing a t  the rear diminishes and the pressure variation 
becomes monotonic as the tension in the rear transition approaches zero. Further cell 
shapes are shown in figure 9 for cells with the same surface area ( A  = 135 pm2) but 
different volumes. 

Cell shapes are also computed using the model including shear and bending 
resistance (equations (2.14)-(2.19)).  These are shown in figure 10 for a range of vessel 
radii. The cell velocity uo is chosen to be 0.01 cm/s, ,u = 1 cP, K = 0.0042 dyn/cm and 
B = 1.8 x dyn cm. These computed shapes demonstrate the effect of bending 
and shear. As the vessel radius increases and the tension a t  the rear of the cylindrical 
region decreases, the rear becomes less convex, then flat and finally concave. The 
transition from convex to concave shapes is also a function of cell velocity. At higher 
velocities, it occurs a t  slightly larger vessel radii. 

Two rheological parameters with physiological significance are the reduction of 
haematocrit due to the Fahraeus effect, and the apparent viscosity. By conservation 

2nR0 sin x Ro dx = 2nr ds, 

of mass 

where H ,  is the tube haematocrit, H ,  the discharge haematocrit, and ti the mean 
bulk velocity. The fact that HT is less than H ,  in general is known as the Fahraeus 
effect. We neglect cell-to-cell interactions, so that the apparent viscosity ,uapp, 
depends linearly on the tube haematocrit 

~ p p  = A 1  +KTHT),  (5 .3)  

where K ,  is the apparent intrinsic viscosity. Assuming that the pressure drop 
between cells is given by Poiseuille's law, we obtain 

where Ap is the pressure drop across the cell and 1 its length. The above expression 
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FIGURE 8. Xumerical computed cell shapes and variations of pressure and isotropic tension for 
flexible particles with volume 90 pm3 and surface area 135 pm2. (a) a = 1.451 pm, (b) a = 1.572 pm. 
Pressure and tension non-dimensionalized as  shown, with I ,  = 1 pm. 

for K ,  is valid if the spacing between cells is of the order of one vessel radius or more 
(Secomb et al. 1986). 

Values of K ,  and Fahraeus effect as functions of vessel radius are shown in fig- 
ure 11, computed using the rigid-particle approach of $3.1, the asymptotic approach 
of @3.2 and 3.3, and the numerical solutions of both the isotropic and bending and 
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FIGURE 9. Computed shapes for cells with larger volumes. (a) V = 100.2 pm3, a = 1.743 pm; 
( b )  V = 100.2 pmS, a = 1.863 pm; (c) V = 109.6 pmS, a = 1.97 pm; ( d )  V = 109.6 pm3, a = 2.175 pm. 

shear models. Also included for comparison are results for larger vessel radii in which 
cells have concave rears (Secomb & Gross 1983). 

The results obtained assuming a rigid particle with the critical shape agree well 
with the numerical results for a flexible particle. This is perhaps surprising, since the 
rigid-particle model neglects the bulging out at the rear which occurs with flexible 
particles, and the pressure fields around the particles are very sensitive to such 
differences in shape. For example, the rigid-particle model predicts a negative 
pressure gradient in the cylindrical region for a particle of critical shape in a vessel 
with a radius of 1.45 pm, as C > 1 - A  in (3.1). In contrast, the numerical solution 
(figure 8) shows a positive pressure gradient. The asymptotic results underestimate 
K,, because only the pressure drop over the length of the cylindrical region is 
included a t  leading order. The estimates of KT obtained from the bending and shear 
model are higher than those obtained from the model of Secomb & Gross (1983). 
Inclusion of shear and bending resistance makes the cell less deformable, resulting in 
narrower lubrication layers. 
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FIGURE 10. Numerically computed cell shapes including bending and shear resistance, with V = 
90 pm3, A = 135 pm2. (a) a = 1.5 pm, ( b )  a = 1.52 pm, (c )  a = 1.55 pm, ( d )  a = 1.6 pm. 

6. Discussion and conclusions 
The deformability of red blood cells allows them to traverse pathways such as 

capillaries with remarkable ease, even when the dimensions of these pathways are 
smaller than the radius of an unstressed red cell. However, in extremely narrow 
pathways such as may occur in bone marrow, spleen, and partially collapsed or 
occluded capillaries of other tissues, the red cell approaches the limits of its 
deformability. Although these pathways may have more complex geometries than 
the case considered here, they share the feature that the cell acquires a rigidity that 
it does not otherwise exhibit as the limitation of fixed surface area is reached. The 
problem considered here represents a prototype and starting point for analysing this 
phenomenon. 

One significant finding is that the range of radii in which near-critical shapes occur 
is quite small. The minimal radius, in the case of human red cells, is 1.42 pm. For 
radii up to about 1.55 pm, the overall shape consists of a cylinder with two 
hemispherical ends. Further increases in the radius lead to a flattening of the rear of 
the cell, which is flat when the radius is 1.572 pm, according to the numerical 
calculations in the high-velocity limit. (The more approximate asymptotic theory of 
$3.3 predicts that this occurs a t  a radius of 1.61 pm.) These results are consistent 
with those obtained using the bending and shear model. As shown in figure 10, the 
shape of the cell is convex up to a radius of 1.52 pm a t  a cell velocity of 0.01 cm/s. The 
radius a t  which this transition in shape occurs increases with cell velocity, and the 
isotropic tension model gives the high-velocity limit. 

The asymptotic analysis of the isotropic tension model provides insight into the 
variation of the cell from its critical shape as the vessel radius increases from the 
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FIGURE 11. Computed rheological parameters for red cells with V = 90 1m3 and A = 135 pm2. 0 ,  
rigid-particle model ; A, asymptotic results for flexible particles ; 0,  numerical results for flexible 
particles with bending and shear resistance; A, numerical results for flexible particles using the 
isotropic tension model; 0, results of Secomb & Gross (1983) for flexible particles with concave 
rears. (a) Variation of apparent intrinsic viscosity K ,  with vessel radius a. (b )  Variation of the 
Fahraeus effect, indicated by H,/H, ,  with vessel radius a. 

minimal value. The outer solutions corresponding to the cylindrical and hemi- 
spherical regions are matched through transition regions of lengthscale eb,, where cr, 
is the gap width, and tensions of order pu, e-f are generated in the membrane. At the 
front, this transition is monotonic, but the membrane bulges out a t  the rear 
transition region. As vessel radius increases, membrane tension decreases and the 
transition regions become wider and more pronounced. With further increases in 
radius, the tension in the rear transition region falls, until a radius is reached at 
which the tension is o(puoe-f). At this stage, a localized region of high curvature 
appears in the transition. If the tension in the rear transition region falls to 
O(pu,llogc\), the angle between.the membrane and vessel wall changes by an 0(1) 
amount through the rear transition layer, so that the rear becomes less convex. The 
application of lubrication theory to the rear region in this case can be justified by a 
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comparison between the predictions of Stokes equation and lubrication theory in the 
case of flow in a corner. 

In summary, our results show that red cell shape, rheological parameters, and 
distributions of pressure and membrane tension are highly sensitive to  changes in 
diameter near the minimal value for intact passage of cells. These results, together 
with those of Secomb et al. (1986), show the wide variation of axisymmetric red cell 
shapes with capillary tube diameter. 

This work was supported by National Institutes of Health grants HL34555, 
HL17421 and HL07249. 
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